Information and Resources

Biopower, or biomass power, is the use of biomass to generate electricity. Biopower system technologies include direct-firing, cofiring, gasification, pyrolysis, and anaerobic digestion.

Most biopower plants use direct-fired systems. They burn bioenergy feedstocks directly to produce steam. This steam drives a turbine, which turns a generator that converts the power into electricity. In some biomass industries, the spent steam from the power plant is also used for manufacturing processes or to heat buildings. Such combined heat and power systems greatly increase overall energy efficiency. Paper mills, the largest current producers of biomass power, generate electricity or process heat as part of the process for recovering pulping chemicals.

Co-firing refers to mixing biomass with fossil fuels in conventional power plants. Coal-fired power plants can use co-firing systems to significantly reduce emissions, especially sulfur dioxide emissions. Gasification systems use high temperatures and an oxygen-starved environment to convert biomass into synthesis gas, a mixture of hydrogen and carbon monoxide. The synthesis gas, or "syngas," can then be chemically converted into other fuels or products, burned in a conventional boiler, or used instead of natural gas in a gas turbine. Gas turbines are very much like jet engines, only they turn electric generators instead of propelling a jet. High-efficiency to begin with, they can be made to operate in a "combined cycle," in which their exhaust gases are used to boil water for steam, a second round of power generation, and even higher efficiency.

Using a similar thermochemical process but different conditions (totally excluding rather than limiting oxygen, in a simplified sense) will pyrolyze biomass to a liquid rather than gasify it. As with syngas, pyrolysis oil can be burned to generate electricity or used as a chemical source for making plastics, adhesives, or other bioproducts.

The natural decay of biomass produces methane, which can be captured and used for power production. In landfills, wells can be drilled to release the methane from decaying organic matter. Then pipes from each well carry the methane to a central point, where it is filtered and cleaned before burning. This produces electricity and reduces the release of methane (a very potent greenhouse gas) into the atmosphere.

Methane can also be produced from biomass through a process called anaerobic digestion. Natural consortia of bacteria are used to decompose organic matter in the absence of oxygen in closed reactors. Gas suitable for power production is produced, and possibly troublesome wastes (such as those at sewage treatment plants or feedlots) are turned to usable compost.

Gasification, anaerobic digestion, and other biomass power technologies can be used in small, modular systems with internal combustion or other generators. These could be helpful for providing electrical power to villages remote from the electrical grid—particularly if they can use the waste heat for crop drying or other local industries. Small, modular systems can also fit well with distributed energy generation systems.

Source: National Renewable Energy Laboratory

  • NREL BioEnergy Atlas

    Built into Google Maps, BioEnergy Atlas includes two interactive maps, BioPower and BioFuels. These maps allow you to compare and analyze biomass feedstocks, biopower and biofuels data from the U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the U.S. Department of Agriculture. Learn more>>

  • Bioenergy KDF

    Similar to the BioEnergy Atlas, this tool supported by the Department of Energy incorporates data shared by government and the bioenergy industry.  The KDF examines the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Learn more>>

  • Overview of Biomass Gasification

    Download PDF >>

  • Co-Generation Combined Heat and Power

    Learn more about biopower under energy management in our industrial section of the website.